Correlação do diâmetro do preparo de uma nova geração de instrumentos de NiTi com as dimensões de cones de guta-percha de sua antiga geração através de uma análise morfométrica

Correlation of the diameter preparation of a new generation of NiTi instrument with the dimensions of gutta-percha points of its old generation through a morphometric analysis

Marja Ribeiro da Silva dos Santos Oliveira,¹ Eduardo Paulo Carvalho,¹ Jacqueline Silva Cardoso Lunz,² Emmanuel João Nogueira Leal da Silva,¹.².³ Edson Jorge Lima Moreira,¹.².³ Victor Talarico Leal Vieira¹.².³

- ¹Faculdade de Odontologia, Universidade do Grande Rio, Rio de Janeiro, Brasil
- ²Programa de Pós-graduação Biotrans, Faculdade de Odontologia, Universidade do Grande Rio, Rio de Janeiro, Brasil
- ³Programa de Pós-graduação Odontoclinex, Faculdade de Odontologia, Universidade do Grande Rio, Rio de Janeiro, Brasil
- · Os autores declaram que não há conflito de interesse.

RESUMO

Objetivo: O presente trabalho teve o objetivo de determinar as dimensões e verificar se os instrumentos X1, X2 e X3 atendem as recomendações da norma ANSI/ADA nº 101 e se os cones de guta-percha F1, F2 e F3 atendem a norma ANSI/ADA nº 78. Material e Métodos: Os resultados dos instrumentos foram comparados com as dimensões dos cones de guta-percha. Foram utilizados 10 instrumentos e 10 cones de cada tipo. As imagens para análise micromorfométrica foram obtidas com uma lupa Opticam e as medidas determinadas com o software TSView versão 7.2.1.7. Os diâmetros em D3, D6 e D9 reais foram comparados com os nominais pelo teste t-student. Os diâmetros dos instrumentos em D3, D6 e D9 foram comparados com os dos cones pelo teste Anova e complementados com teste de comparações múltiplas SNK. Todos os testes adotaram nível de significância α=5%. Resultados: Os resultados obtidos mostraram que há diferença estatisticamente significante entre as dimensões reais e nominais dos instrumentos (p < 0,05). O instrumento X3 apresentou diferença estatisticamente significante em relação ao cone F1 (p < 0,05), onde os valores do cone são menores do que os dos instrumentos. Conclusão: Dentro das limitações deste estudo pôde-se concluir que: os instrumentos X1 e os cones de guta-percha não atenderam as recomendações de suas normas. O cone F1 pode ser uma opção para obturação dos canais modelados com o instrumento X3, porém a termoplastificação se faz necessária.

Palavras-chave: Instrumentos de NiTi; Cones de guta-percha; Análise micromorfométrica.

ABSTRACT

Objective: The aim of the present study was to verify if the Protaper Next instruments X1, X2, and X3 and the Protaper Universal gutta-percha cones F1, F2, and F3 meet the ANSI/ADA 101 and 78 recommendations. Material and Methods: The instruments' dimensions were compared with those obtained by the gutta-percha cones. For this, ten instruments and ten cones of each type were used. Micromorphometric images were obtained and analyzed through a stereomicroscope (OptiCam) and measurements were obtained with TSView software, version 7.2.1.7. The D3, D6, and D9 diameters were compared with the nominal diameters using the Student's t-test. After this, the real diameters of the instruments D3, D6, and D9 were compared with the gutta-percha cone diameters by Anova supplemented with SNK test for multiple comparisons. A $p \le 0.05$ was considered significant. Results: The results showed statistically significant differences between the real diameter and nominal diameter of the instruments ($p \le 0.05$). The X3 instrument showed a statistically significant difference when compared to the F1 cone ($p \le 0.05$), and the cone values were lower than the instrument values. Conclusion: Within the limitations of this study, it can be concluded that: 1) the X1 instrument and the gutta-percha points did not meet the recommendations, and 2) the F1 cone can be an option for filling the modeled channels with the X3 instrument, but termoplastification is required.

Keywords: NiTi instruments; Gutta-percha cones; Micromorphometric analysis.

Introdução

tratamento endodôntico é baseado em etapas de igual importância: limpeza, modelagem e obturação do sistema de canais radiculares. O surgimento dos instrumentos de níquel-titânio (NiTi) tem proporcionado maior facilidade e segurança na limpeza e modelagem dos canais radiculares. A etapa de obturação foi simplificada uma vez que os fabricantes desenvolvem cones de guta-percha correspondentes aos instrumentos, porém nem sempre estes estão acessíveis no mercado.

O sistema de instrumentos Protaper Next da Dentsply Maillefer consiste de cinco tipos de limas com conicidade variada na ponta (X1 17/.04; X2 25/.06; X3 30/.07; X4 40/.06; X5 50/.06) e estão disponíveis em três comprimentos (21mm, 25mm e 31mm).^{2,3}

Os instrumentos Protaper Next possuem propriedades mecânicas superiores a outros sistemas de rotação contínua⁴ e apresentam menor extrusão de debris quando comparados ao sistema Protaper Universal.⁵ Por isso, este sistema tem sido utilizado como uma alternativa para profissionais que ainda não utilizam a instrumentação com cinemática reciprocante.

O sistema Protaper Next disponibiliza cones de guta-percha com forma e tamanhos padronizados que correspondem às dimensões obtidas após a instrumentação do canal para reduzir o tempo clínico.³ Entretanto, os profissionais que optam por adotar esse sistema encontram como desafio à sua utilização a não comercialização desses cones no país. A opção para solucionar tal problema é utilizar cones de outros sistemas como do sistema Protaper Universal para a obturação dos canais.

Alguns estudos determinaram as medidas nominais dos instrumentos Protaper Next³ assim como as medidas dos cones e dos instrumentos Protaper Universal.^{6,7} Muitas vezes os diâmetros não são compatíveis com os reais⁸⁻¹⁰ o que pode gerar dificuldades na etapa de obturação. O conhecimento das dimensões dos instrumentos e dos cones utilizados no preparo do canal é importante.

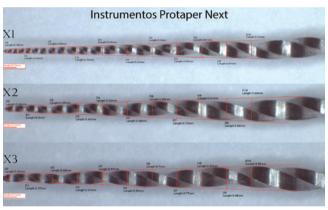
Os objetivos do presente estudo são: (1º) verificar se os instrumentos atendem as tolerâncias estabelecidas pela norma

ANSI/ADA nº 101 e se os cones de guta-percha atendem a norma ANSI/ADA nº 78; (2º) comparar as dimensões dos cones de guta-percha com as dos instrumentos e identificar a melhor relação com os instrumentos do sistema Protaper Next, tendo como referência os diâmetros reais dos mesmos.

Material e Métodos

Instrumentos Estudados

Foram utilizados 10 instrumentos Protaper Next (Dentsply Maillefer, Baligues, Suíça) de especificação X1, X2 e X3 (n = 30) e 10 cones de guta-percha de cada tipo (F1, F2 e F3) (Endopoints, Manacapuru, Amazonas, Brasil) (n = 30). O número de elementos aferidos foi estabelecido de acordo com o item 6.3 da norma ANSI/ADA nº 101, que pede que sejam analisados 10 instrumentos de cada tipo.


• Micromorfometria

As imagens dos instrumentos e dos cones de guta-percha foram obtidas com uma lupa estereoscópica Opticam acoplada a uma câmera digital. As medidas foram realizadas com o software TSView 7.2.1.7. Os diâmetros dos instrumentos e dos cones foram determinados em D0 até D10 com intervalos de medidas de 1,0 mm. O diâmetro em D0 foi medido a 0,2 mm do vértice da ponta.

A conicidade foi calculada de acordo com o item 6.3.3.2 da norma ANSI/ADA nº 101 adotando os diâmetros D4 e D1 para o cálculo. Este item estabelece que a diferença de dois diâmetros seja dividida pela distância dos mesmos. Assim a conicidade foi calculada pela fórmula:

C = (D4 - D1) / 3

Os diâmetros reais dos instrumentos foram obtidos traçando-se retas tangentes (linhas vermelhas da figura 1) às cristas superiores e inferiores da parte ativa dos mesmos.

Figura 1. Método de obtenção dos diâmetros dos instrumentos Protaper Next

Os diâmetros reais dos cones foram determinados por estereomicroscopia de acordo com o item 6.2.1 da norma ANSI/ADA nº 78. Este determina que as medidas sejam feitas com radiografias ou microscópios com escalas de precisão de 0,25 mm. A conduta para realizar as medidas seguiram as recomendações do item 6.2.4 da norma que estabelece que: "Se todos os 10 cones atenderem a norma, o produto está aprovado. Se 8 cones ou menos passaram no teste, o produto falhou. Se 9 cones passaram, 5 cones adicionais devem ser testados, onde estes 5 cones extras devem atender a norma para que o material seja aprovado no teste".

Análise Estatística

Os diâmetros em D3, D6 e D9 dos instrumentos estudados foram comparados com os valores nominais dados pelo fabricante pelo teste t-student com nível de significância de 5%. Estes mesmos valores reais foram comparados com as medidas correspondentes aos diâmetros de D3, D6 e D9 dos cones de guta-percha F1, F2 e F3 pelo teste Anova complementado com teste de comparações múltiplas Student-Newman-Keuls (SNK), ambos com nível de significância ajustado em 5%.

Os diâmetros nominais dos instrumentos em D3, D6 e D9 fornecidos pelos fabricantes e utilizados para a comparação estão apresentados no quadro 1.

Quadro 1. Diâmetros nominais dos instrumentos Protaper NEXT em D3, D6 e D9

Diâmetro Nominal	X1	X2	X3
D3	0,29	0,43	0,51
D6	0,41	0,61	0,72
D9	0,53	0,79	0,93

Resultados

Os valores das médias dos diâmetros e da conicidade dos instrumentos e dos cones de guta-percha estudados estão apresentados nas tabelas 1 e 2, respectivamente. Os resultados foram obtidos por meio de imagens (figura 1).

Tabela 1. Média dos diâmetros reais dos instrumentos Protaper Next e sua respectiva conicidade

INSTR	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	CON
X1												
Média	0,21	0,27	0,33	0,39	0,45	0,50	0,58	0,65	0,71	0,78	0,85	0,06
DP	0,02	0,03	0,03	0,05	0,05	0,06	0,06	0,05	0,05	0,03	0,03	0,01
CV	80,0	0,09	0,10	0,12	0,11	0,11	0,10	0,07	0,06	0,04	0,03	
X2												
Média	0,22	0,28	0,35	0,42	0,48	0,55	0,62	0,68	0,75	0,82	0,88	0,07
DP	0,03	0,04	0,05	0,05	0,06	0,07	0,08	0,08	0,09	0,10	0,10	0,01
CV	0,03	0,05	0,02	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00	
X3												
Média	0,30	0,37	0,44	0,51	0,58	0,63	0,70	0,77	0,82	0,88	0,93	0,07
DP	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,03	0,04	0,05	0,00
cv	0,10	80,0	0,06	0,06	0,05	0,04	0,02	0,03	0,03	0,04	0,05	

Tabela 2. Média dos diâmetros dos cones de guta-percha do sistema Protaper Universal e sua respectiva conicidade

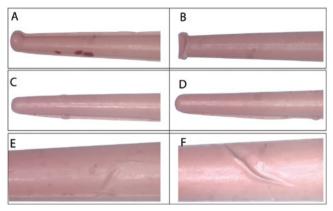
GUTA	D0	D1	D2	D 3	D4	D5	D6	D7	D8	D9	D 10	CON
F1												
Média	0,26	0,31	0,37	0,43	0,49	0,55	0,61	0,67	0,73	0,79	0,85	0,06
DP	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,00
CV	0,05	0,05	0,04	0,03	0,02	0,02	0,02	0,02	0,01	0,01	0,02	
F2												
Média	0,33	0,38	0,44	0,51	0,57	0,63	0,69	0,75	0,82	0,88	0,94	0,06
DP	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,04	0,03	0,04	0,04	0,00
CV	80,0	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04	
F3												
Média	0,3	0,3	0,4	0,5	0,5	0,6	0,6	0,7	8,0	8,0	0,9	0,0
Weula	5	9	5	1	7	3	9	5	1	7	3	6
DP	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
DF	4	3	4	3	3	3	3	3	3	2	3	0
cv	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
CV	0	9	8	6	5	4	4	4	3	3	3	

Pode-se observar que houve diferença estatisticamente significante entre os diâmetros nominais e reais em D3 (p = 0,006), D6 (p = 0,001) e D9 (p = 0,001) dos instrumentos X1. Os instrumentos X2 (D3 p = 0,790, D6 p = 0,901 e D9 p = 0,606) e X3 (D3 p = 0,873, D6 p = 0,143 e D9 p = 0,051) não apresentaram diferença estatisticamente significante dos diâmetros nominais e reais.

Para o instrumento X1, o teste Anova complementado pelo SNK constatou que na região de D3 houve diferença estatisticamente significante em relação a todos os cones de guta-percha (p < 0.05); na região de D6 e D9 não houve diferença estatística para o cone F1.

Para o instrumento X2, na região de D3 só não houve diferença estatisticamente significante em relação aos cones F1 (p > 0.05), na região de D6 houve diferença estatística em todos os cones (p < 0.05). Na região de D9, não houve diferença para nenhum cone (p = 0.088).

O instrumento X3 apresentou em D3 diferença somente em relação ao cone F1 (p < 0.05). Em D6, não houve diferença para nenhum cone (p = 0,416). Na região de D9 só houve diferença em relação ao cone F1 (p < 0,05).


Discussão

Os cones de guta-percha padronizados correspondentes aos instrumentos dos sistemas utilizados facilitam e proporcionam boa qualidade da obturação dos canais radiculares. Porém, na sua ausência, são utilizadas alternativas, como ocorre com o sistema Protaper Next. Para o adequado emprego destes sistemas e obtenção de sucesso no tratamento, é indispensável o conhecimento real dos diâmetros e conicidades tanto do instrumento como do cone.

Alguns estudos determinam as dimensões com uso de paquímetro digital,⁷ ou réguas calibradoras,⁸ porém estes métodos devem ser evitados, pois a ação mecânica de compressão do material pode gerar resultados imprecisos. Este estudo adotou a aferição através de imagens obtidas por estereomicroscópio, o que evita este inconveniente. Outros métodos viáveis para obtenção de resultados mais fidedignos seriam a projeção de perfil¹¹ e a microscopia eletrônica de varredura.¹²

De acordo com o item 6.2.3 da norma ANSI/ADA nº 78, 90% dos cones de guta-percha medidos devem apresentar dimensões recomendadas e a amostra deve ser de no mínimo 10 cones. De acordo com os resultados encontrados neste estudo, somente os cones F1 atenderam as recomendações da norma, estando os cones F2 e F3 fora dos padrões.

Nove cones de guta-percha apresentaram defeitos e foram excluídas do estudo. Alguns defeitos encontrados estão representados na figura 2. Entre os cones F1, um apresentou defeito, enquanto entre os F2 e F3, quatro elementos de cada apresentaram defeitos. Esses defeitos podem ter surgido durante o processo de produção e/ou armazenamento desses cones.

Figura 2. Tipos de defeitos apresentados pelos cones de guta-percha do sistema Protaper Universal. Pontas deformadas (A e B), rebarbas laterais (A, C e D) e ranhuras no corpo do cone (E e F)

Os defeitos e variações dimensionais encontrados nos cones evidenciam que a obturação com cone único a frio não é a melhor opção. Pois esta técnica depende da precisão dimensional dos cones a serem utilizados. Os cimentos endodônticos reforçam a capacidade de selamento da obturação, porém o correto é aumentar o volume do cone de guta-percha e utilizar o mínimo de cimento.^{8,13}

Em relação à precisão dimensional de fabricação, os instrumentos X2 e X3 não apresentaram diferença estatisticamente significante em relação aos diâmetros e as conicidades reais e nominais (p > 0,05), além disso, se encontraram dentro do limite de tolerância da norma ANSI/ADA nº 101. Entretanto, os instrumentos X1 apresentaram diferença estatisticamente significativa entre os diâmetros nominais e reais em D3, D6 e D9 (p < 0,05). A dificuldade de precisão dimensional do instrumento X1 pode ser explicada pelo seu menor diâmetro, o que torna a sua usinagem crítica.

A imprecisão e falta de padronização nos instrumentos endodônticos e os cones de guta-percha estão documentados em vários estudos.⁸⁻¹⁰ A diferença nos instrumentos X1 foi 25% maior em D3, 29% em D6 e 32% maior em D9 do que o infor-

mado pelo fabricante. A informação errada pode gerar dificuldades para instrumentação até o comprimento de trabalho, pois o profissional pode superdimensionar involuntarimante o instrumento gerando degraus, e maior acúmulo de debris que entopem o canal durante o reparo. 9,14

Uma limitação do presente trabalho foi a lupa utilizada para realizar as medidas que, mesmo no seu menor aumento, não permitiu a medição até D16. Os diâmetros em D3, D6 e D9 foram escolhidos de acordo com a distribuição entre D0 e D10 (pontos extremos permitidos pela lupa), para que os segmentos do canal radicular fossem representados (terços cervical, médio e apical).

Um ponto que afasta a metodologia deste trabalho da realidade clínica é o fato de não ter sido avaliado a capacidade de corte diretamente na dentina. O estudo da capacidade de corte do instrumento necessita do controle de muitas variáveis (ex.: grau de hidratação, porosidade e dureza da dentina) para que o estudo seja padronizado e os resultados sejam fidedignos. O modelo utilizado neste trabalho fez a análise de um espaço virtual criado pelo instrumento não sofrendo efeito destas variáveis.

O modelo utilizado no presente estudo consistiu em traçar linhas tangentes as cristas das hélices dos instrumentos (retas vermelhas da figura 1), que simulariam a forma do preparo do instrumento no canal radicular. Medir o núcleo do instrumento ou seu diâmetro real (diâmetros localizados nos vales do canal helicoidal) não teria uma representatividade clínica.

Na comparação das dimensões dos instrumentos X1 e dos cones foi possível identificar uma diferença estatisticamente significante do diâmetro D3 (p < 0,05). Independente da presença ou não de diferenças em D6 e D9, seria contraindicado qualquer um desses três cones para canais instrumentados com esse instrumento uma vez que na zona crítica apical, os cones não irão adaptar, pois possuem maiores diâmetros. A correta adaptação do cone principal à região apical depende, especialmente, da perfeita coincidência entre seu diâmetro D0, com o do instrumento utilizado para a realização do preparo apical, com o propósito de vedar completamente o canal radicular.⁸

Para os instrumentos X2, as diferenças encontradas em relação aos cones F2 e F3 em D3 impossibilitariam a indicação dos mesmos, devido ao seu maior diâmetro. O cone F1 não apresentou diferenças significativas em D3 e em D9, porém, como exposto anteriormente, apresentou diferença em D6 o que impediria o avanço do cone na porção média do canal.

No que concerne ao instrumento X3, os cones F2 e F3 do sistema Protaper Universal não apresentaram diferenças estatisticamente significantes. O instrumento Protaper Next apresenta um movimento excêntrico que promove um alargamento ligeiramente maior que o seu diâmetro, portanto em relação aos diâmetros D3, D6 e D9 provavelmente ocorreria uma boa adaptação. Porém em relação a D0 estes cones não seriam adequados para obturação do preparo do

instrumento X3. Os diâmetros em D0 dos cones F2 e F3 são, respectivamente, 10% e 14% maiores que o diâmetro do instrumento X3, o que dificultaria a passagem destes cones na região apical.

O cone F1 apresentou diferenças relevantes em D3 e em D9, isto pode ser traduzido pelos valores menores dos cones F1 em relação aos instrumentos X3. O desajuste encontrado entre o preparo virtual dos instrumentos X3 e dos cones F1 ficou na faixa de 10% a 15%. O desjauste em D0, D3, D6 e D9 foram, respectivamente: 13%, 15%, 13% e 10%. O cone F1 poderia ser utilizado para obturação do preparo do instrumento X3, porém não seria indicada uma técnica a frio para que possa ser utilizado o mínimo de cimento possível e esta diferença fosse compensada.

Conclusão

Os instrumentos X1 do sistema Protaper Next não atendem as recomendações da norma ANSI/ADA número 101. Há diferença estatisticamente significante entre as dimensões encontradas e a nominal (p < 0,05). As dimensões ficaram entre 25% e 39% superiores aos valores nominais fornecidos pelo fabricante.

Os cones de guta-percha do sistema Protaper Universal não atenderam as recomendações da norma ANSI/ADA número 78 e apresentaram diversos tipos de defeitos.

O cone F1 do sistema Protaper Universal pode ser uma opção para obturação dos canais modelados com o instrumento X3 do sistema Protaper Next, porém devido ao pequeno desajuste (entre 10% e 15%) a termoplastificação se faz necessária.

Agradecimentos

Os autores agradecem à Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) o suporte financeiro fornecido através do processo nº E-26/111.350/2014.

Referências ::

- 1- Lopes NM, Bortoline MCT. Sistema de rotação alternada (Reciproc*): aplicação em canais curvos. Rev UNINGÁ Review. 2014;19(3):56-60.
- 2- Dhingra A, Banerjee S, Yadav V, Aggarwal N. Canal shaping with ProTaper NEXT and ProTaper UNIVERSAL: a comparative study. ADR. 2014;4(1):6-14.
- 3- Protaper NEXT Brocuhure [internet]. United kingdom [citado em 2016 3 jul]. Disponível em:http://www.dentsplymea.com/sites/default/ files/ ProTaper%20NEXT%20brochure_0.pdf.
- 4- Lopes HP, Elias CN, Vieira MVB, Mangeli M, Lopes WSP, Vieira VTL, et al. Evalution of the mechanical properties of three new root canal instruments. ENDO (Long Ingl) 2015;9(2):137-42.
- 5- Koçak MM, Çiçek E, Koçak S, Saglam BC, Yilmaz N. Apical extrusion of debris using ProTaper UNIVERSAL and ProTaper NEXT rotary systems. Int. Endod. J. 2015;48(3):283-6.
- 6- Drago MA, Pereira RS. Instrumentos rotatórios Protaper® Universal. Rev Brasil Pesq Saúde. 2012;14(2):78-82.
- 7- Castilho EH, Britto MLB, Machado MEL, Nabeshima CK. Acurácia do diâmetro de ponta de cones de guta-percha com diferentes conicidades. Arq Odontol. 2014;50(3):138-41.
- 8- Cunha RS, Fontana CE, Bueno CES, Miranda ME, Hofling RTB, Bussadori SK. Avaliação do diâmetro D0 de cones estandardizados. RGO.

- 2003;51(4):215-8.
- 9- Chesler MB, Tordik PA, Imamura GM, Goodell GG. Intramanufacturer diameter and taper variability of rotary instruments and their corresponding gutta-percha cones. J Endod. 2013;39(4):538-41.
- 10- Hilú RE, Scavo R. Análisis morfométrico de los conos de gutapercha, de acuerdo a las normas ISO de estandarización. Rev Asoc Odontol Argent. 1997;85(2):136-40.
- 11- Marroquín BB, Wolter D, Willershausen-Zönnchen B. Dimensional variability of nonstandardized greater taper finger spreaders with matching gutta-percha points. Int Endod J. 2001;34(1):23-8.
- 12- Ceribelli AG. Avaliação da estandartização dos cones de guta percha de três marcas comerciais [Trabalho de concussão de curso]. Londrina - Paraná: Universidade Estadual de Londrina, faculdade de odontologia, 2013.
- 13- Waechter F, Antunes RO, Irala LED, Limongi O. Avaliação comparativa entre o diâmetro de cones estandardizados e cones secundários B8 calibrados por régua calibradora, distando 1 mm das suas pontas (D1). Revista Sul - Brasileira de Odontologia. 2009;6(1):34-43.
- 14- Kim KW, Cho KM, Park SH, Choi KY, Karabucak B, Kim JW. A comparison of dimensional standard of several nickel-titanium rotary files. Restor Dent Endod. 2014;39(1):7-11.

Recebido em: 16/06/2016 / Aprovado em: 25/07/2016

Autor Correspondente Victor Talarico Leal Vieira

E-mail: victortalarico@yahoo.com.br